Quantcast
Channel: Oracle数据库技术文刊-汇聚全世界的甲骨文技术 » infrastructure – ORACLE数据库技术文刊-汇聚全世界的甲骨文技术 – ParnassusData诗檀软件旗下网站
Viewing all articles
Browse latest Browse all 42

Optimisation ?

$
0
0

I was at a client site recently where one of the end-users seemed to have discovered a cunning strategy for optimising a critical SQL statement. His problem was that his query screen times out after 2 minutes, so any query he runs has to complete in less than two minutes or he doesn’t see the results. Unfortunately he had a particular query which took nearly 32 minutes from cold to complete – partly because it’s a seven-table join using ANSI OUTER joins, against tables ranging through the 10s of millions of rows and gigabytes of data – the (necessary) tablescan of the table that had to be first in the join order took 70 seconds alone.

But our intrepid user seems to have made an important discovery and engineered a solution to his performance problem. I think he’s noticed that when you run a query twice in a row the second execution is often faster than the first. I can’t think of any other reason why the same person would run the same query roughly every four minutes between 8:00 and 9:00 am every morning (and then do the same again around 5:00 in the afternoon).

Looking at the SQL Monitoring screen around 10:00 the first day I was on-site I noticed this query with a very pretty graphic effect of gradually shrinking blue bars as 32 minutes of I/O turned into 2 minutes of CPU over the course of 8 consecutive executions which reported run times something like:  32 minutes, 25 minutes, 18 minutes, 12 minutes, 6 minutes, 4 minutes, 2.1 minutes, 2 minutes.

It’s lucky (for that user) that the db_cache_size is 60GB. On the other hand this machine is one of those Solaris boxes that likes to pretend that it’s got 128 CPUs when really it’s only 16 cores with 8 lightweight threads per core – you don’t want anyone running a query that uses 2 solid CPU minute on one of those boxes because it’s taking out 1/16th of your CPU availability, while reporting a load of 1/128 of your CPUs.

Footnote: the query can be optimised (properly) – it accessed roughly 100M rows of data to return roughly 300 rows (with no aggregation), so we just need to do a little bit of work on precise access paths.



Viewing all articles
Browse latest Browse all 42

Trending Articles